基礎電気回路
41. 相互誘導回路の過渡応答

相互誘導の過渡応答では、相互誘導回路において、電源が切断されたときや電流が変化したときに、コイルに流れる電流がどのように変化するかを見る。相互誘導回路とは、2つのコイルが磁気的に結合している回路で、2つのコイルの相互イン […]

続きを読む
基礎電気回路
40. RLC回路の過渡応答

RLC回路の過渡応答とは、電源が投入された直後、回路の電流が定常状態に達するまでの時間の経過に伴う電圧と電流の変化のことである。RLC回路は、抵抗\(R\)、インダクタンス\(L\)、キャパシタンス\(C\)の3つの要素 […]

続きを読む
システム制御工学
18. サーボシステムの設計

レギュレータは、状態変数に平衡点0からずれた初期値があったとき、状態変数を0に戻すための制御システムであった。サーボシステムは、目標値に追従する出力を持つシステムである。現代制御理論におけるサーボシステムの設計は、システ […]

続きを読む
システム制御工学
17. オブザーバ併合型状態フィードバック

オブザーバ併合型状態フィードバック制御システムは、オブザーバと状態フィードバックを組み合わせた制御システムである。オブザーバは、直接観測できない状態変数を推定するために使用され、状態フィードバックは、推定された状態変数を […]

続きを読む
基礎電気回路
39. 過渡現象

過渡現象とは、ある定常状態から別の定常状態に移るまでに起こる現象のことを言う。電気回路では、スイッチを切り替えたときなどに起こる。過渡現象は、回路の安定性に影響を及ぼす可能性がある。また、過渡現象が原因で、回路が誤動作し […]

続きを読む
基礎電気回路
38. ひずみ波交流

ひずみ波交流は、正弦波ではない交流電圧・電流のことで、正弦波ではない波形をひずみ波といい、このような波形の交流電圧・電流をひずみ波交流と呼ぶ。例えば、ダイオードや鉄心入りコイルに流れる電流はひずみ波交流となることがある。 […]

続きを読む
基礎電気回路
37. 負荷インピーダンスのY-Δ変換

電源と負荷の結線法が異なる場合や異なる結線法の負荷が並列になっている場合の回路計算は複雑になる。そこで、電源に影響を与えず、負荷の結線法とインピーダンスの値を等価変換して回路計算を行う。図「負荷インピーダンスの変換」のよ […]

続きを読む
基礎電気回路
36. 三相交流回路の電圧と電流

3相交流回路には、Y結線(スター結線)とΔ結線(デルタ結線)の2つの主要な接続方法がある。これらの結線方法は、3相電力システムでの電力伝送や負荷への接続に使用される。Y結線は、3つの負荷または電源が中央の接続点で接続され […]

続きを読む
基礎電気回路
35. 三相交流起電力

三相交流発電機は、図「三相交流発電機」に示すように3つのコイルを互いに120度の角度で配置した発電機で、中央の磁石を回転させると、それぞれのコイルに起電力が発生する。コイルに120度の角度があるので、発生する起電力も互い […]

続きを読む
基礎電気回路
34. 結合回路

結合回路とは二つ以上の回路があって、一方の回路から他方の回路へ何らかの方法によって電力、電圧、電流が伝達される状態にあるとき、この二つの回路は電気的に結合されているといわれ、この回路は結合回路と呼ばれる。図「結合回路の種 […]

続きを読む
システム制御工学
16. オブザーバの設計

オブザーバの設計では、オブザーバの極配置を実現するためのオブザーバゲインを決定することが主要な問題となる。オブザーバの極は、オブザーバが推定するシステム内部の状態量が収束する速度を決定するためのパラメータであり、極が適切 […]

続きを読む
システム制御工学
15. オブザーバの構造

状態フィードバックでは、基本的には全ての状態変数が直接観測可能と仮定しているが、実際にはそのような場合は多くない。このときには、制御入力と測定出力から状態変数を再現すればよい。このような仕組みをオブザーバ、あるいは、状態 […]

続きを読む
システム制御工学
14. 状態フィードバック

状態フィードバック(state feedback)とは、制御対象の状態変数を測定して、その情報を元に制御入力を決定する方法である。制御対象の状態変数とは、制御対象の内部状態のことであり、その状態変数を観測することで、制御 […]

続きを読む
システム制御工学
13. モード展開と伝達関数行列

1入力1出力(SISO)システムの対角正準形について、9. 対角正準形で述べたが、多入力多出力(MIMO)システムについても同様な変換が可能である。 MIMOシステムを対角変換したとき、$$\boldsymbol{\ti […]

続きを読む
基礎電気回路
33. 交流ブリッジ回路

交流ブリッジは、一般に可変キャパシタ\(C\)や可変抵抗器\(R\)を調整してブリッジの平衡条件を満足させることにより、コイルのインダクタンス\(L\)やその抵抗\(R\)を測定しようとするものである。従って、複素数を用 […]

続きを読む
システム制御工学
12. 可制御正準形

可制御正準形(Controllable Canonical Form)とは、状態空間表現を可制御性に関する正準形に変換することで、制御系の解析や設計を容易にする手法である。状態空間表現は、状態方程式と出力方程式によって構 […]

続きを読む
基礎電気回路
32. 交流回路の解析

交流におけるオームの法則 直流回路におけると同様に、導体に流れる交流電流\(\dot{I}\)は電位差\(\dot{V}\)に比例する。比例定数を\(1/\dot{Z}\)とすると、$$\dot{I} = \frac{\ […]

続きを読む
基礎電気回路
31. 交流回路の電力

交流の電力は、直流の電力と同様に、電圧と電流の積で求められる。交流では、電圧と電流が時間とともに変化するので、その積である電力も変化する。この電力を瞬時電力\(p\)という。$$p = v i \;[W]$$ 図「交流回 […]

続きを読む
基礎電気回路
30. 直列共振と並列共振

直列共振回路 図「直列共振回路」で、電源\(\dot{E}\)の周波数を変化させると、\(X_L = X_C\)、つまり \( \omega L= \frac{1}{\omega C}\)となる周波数が存在する。この周波 […]

続きを読む
基礎電気回路
29. インピーダンスとアドミタンス

複素インピーダンス 図「直流回路と交流回路」の直流回路では、オームの法則により、電圧\(V\;[V]\)、電流\(I\;[A]\)、抵抗\(R \;[\Omega]\)の間に$$R = \frac{V}{I} \; [\ […]

続きを読む