22. ベクトルの微分積分(ベクトル解析)
ベクトルの微分と積分は、ベクトル解析や物理学、工学において重要な数学的ツールである。これらは、スカラー場やベクトル場における変化の解析や物理現象の記述に広く使われる。 ベクトルの微分 ベクトルの微分は、スカラー関数の微分 […]
21. 内積と外積(ベクトル解析)
内積と外積は、ベクトルに関する基本的な演算であり、それぞれ異なる性質や用途を持っている。それぞれの定義、計算方法、幾何学的意味、応用について考える。 内積 図1に示すように、三次元の空間にあるベクトルを空間ベクトルという […]
7-2. 確率密度関数
確率密度関数(Probability Density Function;PDF)は、連続確率変数の確率分布を記述する関数である。PDFは、確率変数がある範囲に値を取る確率を計算するために使用される。 確率密度関数の定義 […]
20. 演算子法(微分演算子)
微分演算子法は、微分方程式の解法や関数の性質を解析するための便利な手法である。この方法では、微分操作を数学的演算子として扱い、代数的な操作を通じて解を求める。微分演算を「変数を乗ずることの拡張概念」として捉えることで、計 […]
19. 偏微分方程式(微分方程式)
偏微分方程(Partial Differential Equation, PDE)は、複数の独立変数に依存する未知関数とその偏導関数を含む方程式である。これは、物理学、工学、生物学、経済学など、多くの分野で自然現象やシス […]
18. フーリエ級数(微分方程式)
スツルム・リューヴィルの境界値問題とフーリエ級数は、直交関数系による展開という点で密接に関連している。スツルム・リューヴィル型の微分方程式は式(1)の一般形で表される。$$\left(\frac{d}{dt}p(t) + […]
17. 境界値問題(微分方程式)
2階同次線形微分方程式の境界値問題を考える。初期値問題は、独立変数\(t\)のある1点における未知関数\(x(t)\)の値と導関数\(x'(t)\)の値を与えて、微分方程式の解を求める問題である。これに対して、境界値問題 […]
16. 特殊関数Ⅱ(微分方程式)
ルジャンドルの微分方程式 ルジャンドルの微分方程式は、球対称性や直交性を持つ関数を特徴付ける重要な微分方程式で、その解であるルジャンドル関数は、数学と物理学の多くの分野で用いられる。ルジャンドルの微分方程式は、二階の線形 […]
15. 特殊関数Ⅰ(微分方程式)
オイラーのガンマ関数やベータ関数は、パラメータの関数である。つまり積分表示で定義されるが、積分変数とは関係のない変数の関数である。このような関数で有名なものがリーマンのゼータ関数$$\zeta(s)= \sum_{n=1 […]
1. 人類とAIの関係
※機械学習のネタ書きに行き詰ったので。 脳休めの駄文です^_^; 「人類はAI(次世代の生命体)を生み出すための仕組みである」という説は、SF的な陳腐な説ではあるが哲学的な視点で議論されてもよいと思う。もっとも結論は、人 […]
14. 2階線形微分方程式(微分方程式)
係数関数の基本解系による表示 式(1)の2階同次線形微分方程式の基本解系を\(\{x_1,\; x_2\}\)とする。$$x'' + p_1(t)x' + p_2(t) x = 0 \;\;\; \cdots (1)$$ […]
1. 機械学習のタイプ
機械学習には、データの種類や目的に応じていくつかの主要なタイプがある。それぞれのタイプには特徴的なアルゴリズムと応用範囲がある。機械学習システムは、学習中に受ける人間の関与の程度、タイプによって分類できる。主要なタイプは […]
13. 線形微分方程式(微分方程式)
線形微分方程式とは、未知関数(通常 \(x(t)\) などで表される)とそのすべての導関数(1階、2階、またはそれ以上の階数)が線形結合された形を持つ微分方程式を指す。線形性の条件として、未知関数\(x\) およびその微 […]