電気数学
7. 解析関数新着!!

解析関数とは、ある点の近傍で無限回微分可能であり、かつその点におけるテイラー展開がその近傍で収束するような関数のことを指す。複素変数\(z\)の関数\(w = f(z)\)が微分可能なとき、すなわち、$$\lim_{\D […]

続きを読む
電気数学
6. テイラー展開(微積分学)新着!!

ある区間で連続な関数は、その区間において\(C^0\)級であるという。同様に、ある区間で\(n\)回微分可能で\(n\)階導関数が連続な関数は、その区間で\(C^n\)級であるという。何回も微分可能ならば\(C^{\in […]

続きを読む
電気数学
5. 積分(微積分学)新着!!

積分の定義は、微分の逆演算と関数のグラフをヒストグラムの極限と見た時の面積という2つの面がある。※微小量、微分の記法などについては、 4. 微分(微積分学)を参照願います。 微分の逆演算としての積分 \(F(x)\)の導 […]

続きを読む
電気数学
4. 微分(微積分学)

微分法 ニュートンは、瞬間における速度や加速度を定義するために微分の概念を導入した。時間の関数をグラフに描いたとき、その曲線への接線の勾配を微分係数という。ライプニッツは、独立変数の微小変化に対する関数の変化の比率を考え […]

続きを読む
電気数学
3. 初等関数(微積分学)

初等関数(elementary function)とは、数学において基本的でよく知られた関数の総称で、以下のような関数が初等関数として挙げられる。1.多項式関数(代数関数)(例:\( f(x) = x^2 + 3x + […]

続きを読む
電気数学
2. 行列式(線形代数)

行列式とは、正方行列に対して定義される量で、歴史的には行列が表す一次方程式の可解性を判定する指標として導入された。幾何的には、線型変換に対して線形空間の拡大率ということができる。つまり、行列式は、行列がどれくらい空間を「 […]

続きを読む
電気数学
1. 行列と行列の演算(線形代数)

線形代数は、ベクトル空間と線形写像に関する理論と応用を扱う。制御工学、特に現代制御理論では重要な数学ツールとなっている。線形代数は、次の概念や操作を含む。1.ベクトルとベクトル空間:ベクトルは数値の集合であり、方向と大き […]

続きを読む